Observational constraints on mixed-phase clouds imply higher climate sensitivity.

نویسندگان

  • Ivy Tan
  • Trude Storelvmo
  • Mark D Zelinka
چکیده

Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resilience of persistent Arctic mixed-phase clouds

11 Global and regional climate models have highlighted the Arctic as a region of particular sensitivity to climate change1. These model results are supported by observations showing rapid environmental change and accelerated warming relative to lower latitudes2–6. This sensitivity has been hypothesized to result from myriad feedbacks operating in the region. Central to these feedbacks are chang...

متن کامل

Sensitivity studies of different aerosol indirect effects in mixed-phase clouds

Aerosols affect the climate system by changing cloud characteristics. Using the global climate model ECHAM5-HAM, we investigate different aerosol effects on mixed-phase clouds: The glaciation effect, which refers to a more frequent glaciation due to anthropogenic aerosols, versus the de-activation effect, which suggests that ice nuclei become less effective because of an anthropogenic sulfate c...

متن کامل

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...

متن کامل

Evaluation of Mixed-Phase Cloud Parametrizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...

متن کامل

Studying Mixed-Phased Clouds Using Ground-Based Active and Passive Remote Sensors

The impact of a cloud system strongly depends on the cloud microphysical properties and its vertical extent (Stephens et al. 1990; Baker 1997). Although clouds can contain only water droplets when >0°C and only ice crystals when < -40°C, between 0 and -40°C, clouds can be of ice, water, or mixed-phase composition (Rauber and Tokay 1991; Cober et al. 2001). Cloud properties associated with diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 352 6282  شماره 

صفحات  -

تاریخ انتشار 2016